Libmonster ID: UK-1502
Author(s) of the publication: Verner Andrei

Front side: :

 2r2.JPG

Progress Sums:-1,-2,-3,-4,-5...    1,2,3,4,5...

We express the formulas:Sn= (n²a₁+n)/2, ; Sn-1=(n²a₁-n)/2,.  (n - Number of summing members, a₁ -  first member of the progression. With a negative or positive value n. Expressions Sn-1, Sn-2  should be understood: subtraction from the number of the member taken).

First option:

   

Example: Sn= (n²a₁+n)/2.

For n = -5 we have: ((-5)2(-1)+(-5))/2=-15;                          For n = 5 we have: (52*1+5)/2=15.

 

 Example: Sn-1=(n²a₁-n)/2

 For n = -5 we have: ((-5)2(-1)-(-5))/2=-10                            For n = 5 we have: (52*1-5)/2=10.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Triangular:                                                                                                                                                                                                         

 

 

 

  Progress Sums:-1,-3,-6,-10,-15....1,3,6,10,15....                                      

  We express the formulas:Sn= ((n+a₁)3-(n+a₁))/6, Sn= (n3-n)/6+(n²a₁+n)/2;  Sn-1=(n3-n)/6; Sn-2=((n-a₁)3-(n-a₁))/6,         Sn-2=(n3-n)/6-(n²a₁-n)/2.       

  First option:

 

 

  Example: Sn= ((n+a₁)3-(n+a₁))/6.

  For n = -5 we have: ((-5+(-1))3-(-5+(-1)))/6=-35;             For n = 5 we have: ((5+1)3-(5+1))/6=35.

 

  Example: Sn-2=((n-a₁)3-(n-a₁))/6.

  For n = -5 we have:((-5-(-1))3-(-5-(-1)))/6=-10;                For n = 5 we have: ((5-1)3-(5-1))/6=10.

 

  Second option:

 

  Example: Sn= (n3-n)/6+(n²a₁+n)/2.  

  For n = -5 we have: ((-5)3-(-5))/6+((-5)2(-1)+(-5))/2= -35;    For n = 5 we have:  (( 5)3-5)/6+(52*1+5)/2= 35.

          

  Example: Sn-1=(n3-n)/6.

  For n = -5 we have: ((-5)3-(-5))/6= -20;                             For n = 5 we have: (( 5)3-5)/6=20.

     

  Example: Sn-2=(n3-n)/6-(n²a₁-n)/2.

  For n = -5 we have:((-5)3-(-5))/6 -((-5)2(-1)-(-5))/2= -10;       For n = 5 we have: (( 5)3-5)/6-(52*1-5)/2= 10.

                                              

         Quadrilateral:

 4r2.JPG

 Progress Sums: -1,-4,-9,-16,-25....1,4,9,16,25....

  We express the formulas:Sn= a₁(n+a₁)(n²a₁+0,5n)/3,  Sn= (n3-n)/3 + (n²a₁+n)/2;  Sn-1= a₁(n-a₁)(n²a₁-0,5n)/3, Sn-1=(n3-n)/3 - (n²a₁-n)/2.

  First option:

 

  Example: Sn=a₁(n+a₁)(n²a₁+0,5n)/3.

  For n = -5 we have: -1(-5+(-1))*((-5)2(-1)+(-2,5))/3=-55;        For n = 5 we have: 1(5+1)(52*1+2,5)/3=55.

 

  Example: Sn-1= a₁(n-a₁)(n²a₁-0,5n)/3.

  For n = -5 we have: -1(-5-(-1))*((-5)2(-1)-(-2,5))/3=-30;           For n = 5 we have:1(5-1)(52*1-2,5)/3=30.

 

  Second option:

 

  Example: Sn= (n3-n)/3 + (n²a₁+n)/2.

  For n = -5 we have: ((-5)3-(-5))/3 +((-5)2(-1)+(-5))/2= -55;       For n = 5 we have:((5)3-5)/3 + (52*1+5)/2= 55.

 

  Example: Sn-1= (n3-n)/3 -(n²a₁-n)/2.

  For n = -5 we have: ((-5)3-(-5))/3 -((-5)2(-1)-(-5))/2= -30;           For n = 5 we have: ((5)3-5)/3 -(52*1-5)/2= 30.

 

 

 


© elibrary.org.uk

Permanent link to this publication:

https://elibrary.org.uk/m/articles/view/Calculation-of-the-pyramid-Sequence-of-numerical-progressions

Similar publications: LGreat Britain LWorld Y G


Publisher:

Andrei VernerContacts and other materials (articles, photo, files etc)

Author's official page at Libmonster: https://elibrary.org.uk/andrei_62

Find other author's materials at: Libmonster (all the World)GoogleYandex

Permanent link for scientific papers (for citations):

Verner Andrei, Calculation of the pyramid (Sequence of numerical progressions). // London: British Digital Library (ELIBRARY.ORG.UK). Updated: 10.10.2024. URL: https://elibrary.org.uk/m/articles/view/Calculation-of-the-pyramid-Sequence-of-numerical-progressions (date of access: 24.03.2025).

Publication author(s) - Verner Andrei:

Verner Andrei → other publications, search: Libmonster Great BritainLibmonster WorldGoogleYandex

Comments:



Reviews of professional authors
Order by: 
Per page: 
 
  • There are no comments yet
Related topics
Publisher
Andrei Verner
Stokholm, Sweden
221 views rating
10.10.2024 (165 days ago)
0 subscribers
Rating
0 votes
Related Articles
  Основным свойством нейтральной зоны постоянного магнита является наличие направленной силы движения (магнитное самодвижение)с выраженным притяжением, по отношению к любому основному полюсу другого магнита. При движении магнитного поля нейтральной зоны параллельно оси намагниченности постоянного магнита вдоль плоскости проводящего контура - Возникает электрический ток.
Catalog: Physics 
11 days ago · From Andrei Verner
  Воздействие магнитного поля нейтральной зоны - Возникновение электрического тока в проводящем контуре, движущемся в магнитном поле нейтральной зоны.
Catalog: Physics 
11 days ago · From Andrei Verner
M. E. ORLOVA. THE BRITISH WORKING CLASS AND THE IRISH PEOPLE'S LIBERATION STRUGGLE
Catalog: History 
51 days ago · From Dora Connors
BOOK "PIRATES" OF ENGLAND AT THE END OF THE XVI-BEGINNING OF THE XVII CENTURY
Catalog: History Bibliology 
51 days ago · From Dora Connors
THE STRUGGLE OF ENGLISH TRADE UNIONS AGAINST THE CONSEQUENCES OF THE "TAFF AFFAIR"
53 days ago · From Dora Connors
ENGLAND BETWEEN TWO REVOLUTIONS (1660-1688)
Catalog: History 
53 days ago · From Dora Connors
CONVOY "AB-55"
53 days ago · From Dora Connors
FASCISM IN ENGLAND BETWEEN THE WORLD WARS: GENESIS, CHARACTER, SPECIFICS
Catalog: History 
54 days ago · From Dora Connors
SOVIET-BRITISH RELATIONS AT THE TURN OF THE 70S AND 80S
54 days ago · From Dora Connors
OIL FOR THE BRITISH NAVY
54 days ago · From Dora Connors

New publications:

Popular with readers:

News from other countries:

ELIBRARY.ORG.UK - British Digital Library

Create your author's collection of articles, books, author's works, biographies, photographic documents, files. Save forever your author's legacy in digital form. Click here to register as an author.
Library Partners

Calculation of the pyramid (Sequence of numerical progressions).
 

Editorial Contacts
Chat for Authors: UK LIVE: We are in social networks:

About · News · For Advertisers

British Digital Library ® All rights reserved.
2023-2025, ELIBRARY.ORG.UK is a part of Libmonster, international library network (open map)
Keeping the heritage of the Great Britain


LIBMONSTER NETWORK ONE WORLD - ONE LIBRARY

US-Great Britain Sweden Serbia
Russia Belarus Ukraine Kazakhstan Moldova Tajikistan Estonia Russia-2 Belarus-2

Create and store your author's collection at Libmonster: articles, books, studies. Libmonster will spread your heritage all over the world (through a network of affiliates, partner libraries, search engines, social networks). You will be able to share a link to your profile with colleagues, students, readers and other interested parties, in order to acquaint them with your copyright heritage. Once you register, you have more than 100 tools at your disposal to build your own author collection. It's free: it was, it is, and it always will be.

Download app for Android