Libmonster ID: UK-1502
Author(s) of the publication: Verner Andrei

Front side: :

 2r2.JPG

Progress Sums:-1,-2,-3,-4,-5...    1,2,3,4,5...

We express the formulas:Sn= (n²a₁+n)/2, ; Sn-1=(n²a₁-n)/2,.  (n - Number of summing members, a₁ -  first member of the progression. With a negative or positive value n. Expressions Sn-1, Sn-2  should be understood: subtraction from the number of the member taken).

First option:

   

Example: Sn= (n²a₁+n)/2.

For n = -5 we have: ((-5)2(-1)+(-5))/2=-15;                          For n = 5 we have: (52*1+5)/2=15.

 

 Example: Sn-1=(n²a₁-n)/2

 For n = -5 we have: ((-5)2(-1)-(-5))/2=-10                            For n = 5 we have: (52*1-5)/2=10.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Triangular:                                                                                                                                                                                                         

 

 

 

  Progress Sums:-1,-3,-6,-10,-15....1,3,6,10,15....                                      

  We express the formulas:Sn= ((n+a₁)3-(n+a₁))/6, Sn= (n3-n)/6+(n²a₁+n)/2;  Sn-1=(n3-n)/6; Sn-2=((n-a₁)3-(n-a₁))/6,         Sn-2=(n3-n)/6-(n²a₁-n)/2.       

  First option:

 

 

  Example: Sn= ((n+a₁)3-(n+a₁))/6.

  For n = -5 we have: ((-5+(-1))3-(-5+(-1)))/6=-35;             For n = 5 we have: ((5+1)3-(5+1))/6=35.

 

  Example: Sn-2=((n-a₁)3-(n-a₁))/6.

  For n = -5 we have:((-5-(-1))3-(-5-(-1)))/6=-10;                For n = 5 we have: ((5-1)3-(5-1))/6=10.

 

  Second option:

 

  Example: Sn= (n3-n)/6+(n²a₁+n)/2.  

  For n = -5 we have: ((-5)3-(-5))/6+((-5)2(-1)+(-5))/2= -35;    For n = 5 we have:  (( 5)3-5)/6+(52*1+5)/2= 35.

          

  Example: Sn-1=(n3-n)/6.

  For n = -5 we have: ((-5)3-(-5))/6= -20;                             For n = 5 we have: (( 5)3-5)/6=20.

     

  Example: Sn-2=(n3-n)/6-(n²a₁-n)/2.

  For n = -5 we have:((-5)3-(-5))/6 -((-5)2(-1)-(-5))/2= -10;       For n = 5 we have: (( 5)3-5)/6-(52*1-5)/2= 10.

                                              

         Quadrilateral:

 4r2.JPG

 Progress Sums: -1,-4,-9,-16,-25....1,4,9,16,25....

  We express the formulas:Sn= a₁(n+a₁)(n²a₁+0,5n)/3,  Sn= (n3-n)/3 + (n²a₁+n)/2;  Sn-1= a₁(n-a₁)(n²a₁-0,5n)/3, Sn-1=(n3-n)/3 - (n²a₁-n)/2.

  First option:

 

  Example: Sn=a₁(n+a₁)(n²a₁+0,5n)/3.

  For n = -5 we have: -1(-5+(-1))*((-5)2(-1)+(-2,5))/3=-55;        For n = 5 we have: 1(5+1)(52*1+2,5)/3=55.

 

  Example: Sn-1= a₁(n-a₁)(n²a₁-0,5n)/3.

  For n = -5 we have: -1(-5-(-1))*((-5)2(-1)-(-2,5))/3=-30;           For n = 5 we have:1(5-1)(52*1-2,5)/3=30.

 

  Second option:

 

  Example: Sn= (n3-n)/3 + (n²a₁+n)/2.

  For n = -5 we have: ((-5)3-(-5))/3 +((-5)2(-1)+(-5))/2= -55;       For n = 5 we have:((5)3-5)/3 + (52*1+5)/2= 55.

 

  Example: Sn-1= (n3-n)/3 -(n²a₁-n)/2.

  For n = -5 we have: ((-5)3-(-5))/3 -((-5)2(-1)-(-5))/2= -30;           For n = 5 we have: ((5)3-5)/3 -(52*1-5)/2= 30.

 

 

 


© elibrary.org.uk

Permanent link to this publication:

https://elibrary.org.uk/m/articles/view/Calculation-of-the-pyramid-Sequence-of-numerical-progressions

Similar publications: LGreat Britain LWorld Y G


Publisher:

Andrei VernerContacts and other materials (articles, photo, files etc)

Author's official page at Libmonster: https://elibrary.org.uk/andrei_62

Find other author's materials at: Libmonster (all the World)GoogleYandex

Permanent link for scientific papers (for citations):

Verner Andrei, Calculation of the pyramid (Sequence of numerical progressions). // London: British Digital Library (ELIBRARY.ORG.UK). Updated: 10.10.2024. URL: https://elibrary.org.uk/m/articles/view/Calculation-of-the-pyramid-Sequence-of-numerical-progressions (date of access: 13.07.2025).

Publication author(s) - Verner Andrei:

Verner Andrei → other publications, search: Libmonster Great BritainLibmonster WorldGoogleYandex

Comments:



Reviews of professional authors
Order by: 
Per page: 
 
  • There are no comments yet
Related topics
Publisher
Andrei Verner
Старый Оскол. Белгородская Область., Russia
288 views rating
10.10.2024 (275 days ago)
0 subscribers
Rating
0 votes
Related Articles
Equality restored
Catalog: Military science 
10 days ago · From English Library
OUR REGIMENT HAS ARRIVED
Catalog: Military science 
10 days ago · From English Library
"Marshal Rokossovsky will command the parade...
Catalog: History 
12 days ago · From English Library
The editor-in-chief of the "Military Historical Journal" is Captain of the 1st rank Ivan ANFERTIEV: "Will we only publish the truth?"
Catalog: Other 
28 days ago · From English Library
DID YOU NOT GIVE YOUR HONOR TO ANYONE?
Catalog: Military science 
31 days ago · From English Library
Features of work of commanders with military personnel who have the following characteristics
Catalog: History 
34 days ago · From English Library
Time connection. Orientira portrait Gallery. "The intrepid warrior and the most skilled minister"
Catalog: Law 
55 days ago · From English Library
Orientir-a magazine not only for the military
Catalog: Military science 
55 days ago · From English Library
IN MEMORY OF A FRIEND
Catalog: Political science 
56 days ago · From English Library
Can fate be programmed?..
Catalog: History 
57 days ago · From English Library

New publications:

Popular with readers:

News from other countries:

ELIBRARY.ORG.UK - British Digital Library

Create your author's collection of articles, books, author's works, biographies, photographic documents, files. Save forever your author's legacy in digital form. Click here to register as an author.
Library Partners

Calculation of the pyramid (Sequence of numerical progressions).
 

Editorial Contacts
Chat for Authors: UK LIVE: We are in social networks:

About · News · For Advertisers

British Digital Library ® All rights reserved.
2023-2025, ELIBRARY.ORG.UK is a part of Libmonster, international library network (open map)
Keeping the heritage of the Great Britain


LIBMONSTER NETWORK ONE WORLD - ONE LIBRARY

US-Great Britain Sweden Serbia
Russia Belarus Ukraine Kazakhstan Moldova Tajikistan Estonia Russia-2 Belarus-2

Create and store your author's collection at Libmonster: articles, books, studies. Libmonster will spread your heritage all over the world (through a network of affiliates, partner libraries, search engines, social networks). You will be able to share a link to your profile with colleagues, students, readers and other interested parties, in order to acquaint them with your copyright heritage. Once you register, you have more than 100 tools at your disposal to build your own author collection. It's free: it was, it is, and it always will be.

Download app for Android